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SUMMARY

A direct analogy is established between the use of source—slink
and doublet distributions in the solution of arbitrary boundary value
problems in subsonic wing theory and the corresponding problems in
supersonic theory. .The concept of the "finite part" of an integral
is introduced and used in the calculation of the improper integrals
aasociated with supersonic doublet dilstrlbutions. The general
equations developed are shown to include several previously pub—
lished results and particular examples are given for the loading on
rolling and pltching triangular wings with supersonic leading edges.

INTRODUCTION

The problem of finding pressure dlstributlions over alrfoils of
arbltrary shape and plan form or of finding sirfoils which have
arbitrary pressure distributions is one of the most fundamental
problems in aerodynamic theory. At the present time the most
important and satisfactory approach to problems of this type 1s
provided by the methods of so—called thin-airfoll theory. The-
essentlal assumptions in this theory are that the perturbation
veloclties 1nduced by the airfoll are small relatlve to the free—
stream velocity and that the boundary conditions can be specified
In & f£1xed reference plane.

Under the assumptions of thin-elrfoll theory the thedretical
analysis of & problem in wing theory resolves itself into the task
of determining the solution of a second—order linear -partial
differential equation with prescribed boundary conditioms. In the
cagse of purely subsonic flow, Laplace's equation in three dimensions
must be consldered, while in purely supersonlc flow the differential
equation which arises is algebraically equivalent to the two—
dimensional wave equation of mathematicel physics. The classlcal
solutlions of these two equatlons have been developed along two
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distinct lines: first by use of orthogonsl fumotions which can be
derived in terms of the boundary conditioms, and alternatively by
means of Green's thecrem which in turn utilizes a mown particular
solution of the partisl differential equation together with the
glven boundary conditienms.

One particular solution assoclated with Iaplace's equation and
subscnio asrodynamics has been found to be ocutstanding in its
mathematical usefulness and, when identified with the velooity
potential, has a physical interpretation which can supply, in direct
application, added insight into the nature of the problem. This
funotion is referred to as the "Pundamental solution™ and can be
developed fram the ocomcept of a sc—oalled source. A concamitant
development to the source potential is the doublet potential, and
appropriate distributions of these functions are known to be
sufficient for the solutiom of all problems in subsonic wing theory.

The extensicn of the use of the fundamental solution to problems
In purely superacnic flow introduoces mathematioal difficulties which
differ egsentlally from those encountered at low speeds. Both the
source and the doublet potentials possess singularities on thelr
oonical oharacteristio surfaces or Mach oones and, in the case of
the doublet, the eingularity is of higher order than cen be treated .
by elementary mathematiocal methods. In the historical developmesnt
of the soluticms of the wave equation this trouble was olrcumvented
by replacing the source potential by cther particular solutions of
the differentisl equation, As an example, Volterra (reference 1)
introduced the Integral of the fundamental solutiom and in that way
reduced the order aof the singularities involved. The analytical
development of Velterra's theory presents no inherent difficulties
(e.8.; reference 2) but the physicel significance of the particular
solution 1s lost, the direct anaslogy with subsonlo theory no longer
exiats, and a certain amount of mathematical inefficlency arises
since, after using the Integral of the aource potential, it ls
found necessary to resort at the end of the analysis to taking a
. £inal derivative,

In this report, following methods introduced by Hadamard
(reference 3), a general solution to the thin-eirfoil problem
in supersomic theory will be gilven in terme of the distribution of
sources and doublets over the glven reference plame. XNurthermore,
a discussion of the mature of the boundary values required will be
given. For properly set problems in wave theory it has been found
necessary to specify, usually, both the requlred function and 1ts
derivative with respect to time along the boundary comsidered. In
aerodynamic applications of the wave equation associated with
1ifting surface theory and thickness distributions it will be shown
thet only a knowledge of the unknown function or its normal
derivative along the boundary 1s neoded since a relationship between
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the two functlions will be established on the boundary surface.

In the theoretical portion of the report a brief presentation
wlll be mede of the differential equations involved and the two formas
of the:fundamental solution. An outline is then given of the types
of boundary value problems encountered and, since the purpose of the
report 1s to extend the concepts of thin-eirfoil theory which are
used In subsonic theory to problems srising In superscnic theory, a
digcussion willl be glven of the subsonlc development as a baals for
the analogy which exists between the metheds of solutlon corresponding
to the two regimes of flow. In the discusaion of the purely superaonid
cage it will be shown that the Introduction of the concept of
"finite part"™ will provide a technique whereby the improper integrals
arising from the use of doublets may be evaluasted in a stralght—
forward manmer, The applications of the theoretical developments
will include the rederivation of same previocusly published results
end will slso comtain the calculation of load distributions for
rolling and pitching trlangular wings with leading edges swept ahead
of the Mach cone from the vertex of the trilangles.

SYMBOIS
b épan of wing
c chord of wing
M free—stream Mach number
n normel to arbltrary surface

n3Na,nNa dii'eotion cosines of normal =n

P static pressure
P rate of roll sbout X-exis
a free—gtream dynamic pressure
Q rate of pitch about Y-axis
; fundsmental solution of equation (3)
[(x~x1) 2#(y-71) 2+(z21) 2 ] -2
i'l- fundsmental solution of equatiom (L)
o

[ (2x1) 2~(3=y1) 3{2~21) 2]
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arbltrary region of Integration
surface enclosing region R

perturbatiocn velooities in direction of X—, Y=, and Z—exes,
regpectively

free-gtream veloclity

Cartesian coordinates in originsl space varilables

trangfoymed system of coordinates
Fard

infiniteaimal used in amalysis

gurface along which stream enters induced fileld of wing

conormal to arbitrery surfaoce

direction cosines of oonormal

variasble representing either acceleration potential,
velocity potential, or any of the three perturbation
velocity components

gurface on which boundary conditions are given

perturbation velocity potential

varisble representing either acceleration potential,

velocity potential, or any of the three perturbation
volacity cemponents

presgure coefficient

load occefficient

moment about X—axl
rolling-moment coefficient = a)

gdb X wing area
36, /d(Fb /2V)

2 2 az
differential operator (: + om— --,-)
3% dy°
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m I
differentlal operator (a —— — >
) dy dz

l slgn denoting "finlte part" of integral

Subscripts

u subscript denoting value of varieble on upper surface of
wing .

] subscript denoting value of variable on lower surface of
wing

1 subscript denoting variable of integration

c subsoript on r denoting fundamental solution in supersonic
flow

Superscript

superscript denoting value of varisble on opposite side
of T from fixed point (x,¥y,2)

THEORETICAIL DEVELOPMENT
Linearized Equations and Boundary Conditions

The linearizetion of the second—order differential equation for
compressible £1uld flow is developed umder the assumptions of thin—
airfoll or small—perturbation.theory. If the velocity vector of the
free stream is parellel to and In the direction of the positive
X-axis, the resulting diPferential equation is expressible in the

form

d2q 92q 03¢
1-M2 =0 1
) = ()

where § represents a veloclty potential, acceleration potential, or
any one of the perturbaition velocities while M 1s the constant
velue of the free—stream Mach number. Assuming the plane of symme try
of the airfoil to lie in the XY plane, the boundaxry condltions
associated with equation (1) are glven for Z=0, Moreover, if
u, v, and w represent, respectively, the perturbation velocity
. components along the X, X, and Z-exes, and 1f the veloclty of the
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free stream 1s V, the direction cosines of any atream line are
proportional to the point functions V + u(X, ¥, 2), (X, Y, Z),

L
and w(X, Y, Z) while pressure coefficient T is glven by the
relation

Ap 2
T (2)

Dotailed dlscussions of these results may be found in reference 4,

Introducing the affine transformations

x=X
H1-M2) Y
JEQME) zZ

where the signs under the radicals are chosen so that real values
result, it follows that in the subsomic case (M<1l) equation (1)
~ reduces to

y

-4

d2q . d2q 0%q _

=0
ox2 Jy2 * oz2 ()
while the supersonic case (M>1) ylelds
2 20 2q
32 9 o -0 (%)

ox2 dy2 T 322

The fundamental solution associated with equation (3) 1s

1

% = [(x=x2)" + (3=32)" + (z22)"] 2 (5)
or, In termes of the original space varlables, N
% = [(3X1)% + B(v-1)2+ p3(2-21)%] ° (52)

where

B2 = (L — M®)
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When the wave equation is to be considsred the fundamenta.l solution
takes the form

5; = [(xx1)® = (p32)® = (222)?T % (6)
or
1 - [EE)? - pRlrm)? - az(znzm]— 2 (6a)
where

2 = (M2 -1)

These fundamental solutions represent, respectively, in subsonic
and supersonic flow the velocity potentlals at the point (x,y,z) or
(X,Y,2) of unit sources situated at the point (x3,¥y1,z1) Or
(X1,Y2,21). The velocity potential of a doublet may be obtained by
teking a dlrectional derivative of the source potential, the
direction of the axis of the doublet coinciding with the direction
along which the derivative is teken. These two runctions will be

gseen to be of paremount importence when Green's theorem is applied
to the given boundary condltions.

It remalns now to mentlion the types of boundary conditioms which
appear in problems assoclated with wing theory. As a convenlence to
the development of the theory the normelized forms (equations (3)
and (4))of equation (1) will be used and boundary conditions will be
.agsumed. known with respect to the x,y,z coordlnate system. Retransfor—
mation to theX,Y,Z system of axes can be made quite simply wherever
needed in gpplication. In order to defimne the boundary conditions,
two subscripts will be introduced: the first, u, denotes the value
of the required functlon on the upper surface, that is the limit of
the function as 2z approaches zero from the positive direction; the
second, 1, dJdemotes the value on the lowsr surface, that 1s, the
limit of the required functlion as 2z approaches zero from the negatlve
direction.

Using these definitions the three boundary vaelue problems of
principal interest can be deflined as follows:

1. Symmstrical nonlifting airfoil.— In this case wy = wy =0
over all of the xy—plane except for the reglon occupled by the
alrfoll where 2w, = —2w; = AW = £(x,y) the function being determined

by the gecmetry of the wing. Over all of the xy—plane, 2LAu = O,

2, Lifting plate with specifiled loading.— It is given that
Mi=1uy —uy = 0 over the xy-plane except for the reglon occupied
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by the airfoll where Au = £(x,y), the function being determined by
the specified loadlng. Moreover, Aw = 0 everywhers.

3. Lifting plate wlth specified camber, twist, and angle of
incidence .~ Over the xy-plane Aw = 0 everywhere, And, except for
the reglon occupled by the alrfoll, Z2u = 0, Over the reglon occupiled
by the airfoil w = £(x,y) where f(x,y) 1is determined by the given
camber, twist, and angle of 1ncidence.

It should be pointed out that the problems considered here differ
from the usual type of boundary value problem encountered. In the
so-called Dirichlet or Neumann problems, which arise in commectlon
wlth Leplace!s equation, the value of the normsl derivative of the
functlon or of the fumction ltself 1s specified along the boundary
while the Cauchy problem for second~order partisl differential
equations Involves the knowledge of both the function and a derivative,
BExcept for ome case in the eserodynamic problems llsted above, no
absolute values are given but rather the Jump In the value of the
function along the boundary 1s presoribed.

Boundary Value Problems in Purely Subsconic Flow

Since the purpose of this report is to extend the comcepts of
thin—eirfoll theory which are used in subsonic theory to problems
arlsging In supersonic theory, some dlscussion of the former will be
given to provide lucidity as well as to furnlsh a basis for the
analogy which will be shown to exist between the methods of solutlon
ariging In the two regimes of flow.

The method whereby the solutions of the given problems can be
effected 1s provided by Green's theorem which relates a volume
integral over a region R to a surface integral over the surface
8 enclosing R, If o,  are any two functlons whilch, together
with their first and second derivatives,are flnite and single—valued
throughout R, +then for the subsonlc case

e [ [ (B0 ] frrvcacam @

2 2 2
where the Leplacian operator, ¢2 =§x_é+ g}-é- + Bzz, 1s

introduced and the directiomal derivatives on the left slde are
teken along the normal n, drawn inward, to the surface s. 1
T

Identifying now the function o “with the fundamental solution

and specifying that @ satisfies Laplace's equation, equation (7
gimplifies to glve



RAGA TN No: 1515 ' 9
: v

fst %i")m 2 ;'nr)']ds= 0 ,,. (8)

where . BN R Y e P

L[ (xm)® + (py0)® + (222)?] 5

®

H

The variables of integration in the equation are X3, y1, 21, While
X, ys 2 ere the cdordinates of a polnt P elther inside or outside of
the reglon of integration.

TIf the point P is assumed to be inside the reglon of integration,

1t 18 evident that the funétion % becomes infinite at P, and it 1s

necessary to exclude this point from the region if formula (8) is to
apply. Desoribing s spherical surface & wlth radius € about the
point P, and considering the Integral over the two surfaces I and 8
which enclose the reglon, it can be shown that in the limit as

e —>0 equation (8) becomes .

- [[[EE s @

The physioal significance of this last relation follows immediately: g
‘ . ...‘:J’,___,._ _{:‘.‘:.'.‘_z !
the term % represents a fluld source and the term é‘;ln?_). PR S
re;zrem t5 & doublet with 1ts axis lying‘EIong the normal o 5 s both
source and doublet being situated at the surface point Xi, yi, 21.
The value of the function Q at the point x, ¥y, z is therefore given
as an Integral of a source and doublet distribution, the strengths of
the two being determined directly from the respective boundary values

of @ ena 98
on

Equation (9) expresses the value of @ In terms of the surface

values of Q and 20 but this relation does not imply that a

_ on

knowledge of both these variables is mecessary for the determination

_of Q. As can be shown easlly, another comndition may be established
vwhich relates the two surface values. Applying equation (8) to the

case where P lies outside the region of integration, 1t follows that

the integral 1s equal to zero and that Q and -gf on the surface
are funcétionally dependent.
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Sufficient information is now at hand to provide a solution for
the thin-eirfoill-boundary value problems. Considsr the region R
bounded by the xy-plane and s hemigpherical doms of Infinite radius
lying sbove this plane. For all problems to which the results will
be applied, the value of & may be assumed equal to zero at infinity.
The comtribution of the surface Integral over the hemisphere 1s thus
zero and, from equation (9)

/[ 2 () o o

vhere the Integration extends over the entire plene. The directional
derivatives are necessarily in the direction of the positive z—axis
end subscripts -are again Introduced to denote conditions on the upper
s8lde of the plane. Keeping P fixed and integrating over the lower
side of the xy-plamne, 1t follows that

o--&f/T23me 2 @)oo

vhere the negartive direction of the normal may be ignored since the
Integral is equal to zero., Subtracting these two equations glves
the expression

9‘(x,y,z) = —if\[[%@-z‘-’u-g-fl -(2y — n;)-()]dx dyx  (20)

the integral extending now only over the aree + for which the
integrand does not vanish. ZEquation (10) ie the basic equation from
which all solutions in subsonic wing theory will be developed. It
should be pointed out that the derivation proceeded from the
assumption that the point (x,y,z) lay above the xy-plane. When
(x,7,2) lies below the xy-plane, however, the derivation can be
carrled through in exactly the same manner. Such a development
reveals that equation (10) is general and that no restriction need
be imposed on the position of (x, y, z) relative to 'bhe reference
plane.

As 8 particular application of equation (10) consider a thin
symetrical alrfoil at zero angle of attack and set 9 = ¢ where
® 1s the perturbation veloclty pobential. Conditions of symmetry

o0y o0
demand that Qg = Oy = 0 = @ While = =1 a.nd.gz-l = Wy,
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s, 38wy vy = Rt
- ‘.\ S(j\\
A \ .

o empnf[miman e (11)

and the veloclty potentiel 1s glven by = dlstribution of souxrce
potentiels, This distribution can be immediately related to the
slope of the basic section by means of the equation -

The symmetric airfoll can also be treated by replecing & by
the perturbatioms velooity w and in the case of the thin lifting
surface wlth given loading the functiom § can be set equal to u,
Enployling, respectively, conditioms of symmetry and ilrrotationality,

1t follows that gﬂ - ggl vanishes and, after setting Af= 8, -4,
z . Oz

equation (10) beccmes

P
oV

Ll 'Y"U'

a(xny) =——f[Aﬂ C_)axl “"7. o (12)

Boundary Velue Problems In Purely Supersonic Flow

E-E 1oa.tions of Green's Theorem.— The problem to be discussed
at this point is the extemt to whiloh an apslogue to equation (10) cen
be developed for supersonlc flow filelds. The first step in the
presentation 1s, once more, the introduction of Green's theorem for
equation (1) after 1t has been modified to the form given by equa—
tion (4). Employing the operator

° - -
—~ T T HE T %E

Green's theorem now beccmes

ff <° > ° ao-ds "_/z/l;f@ 1%~ [J° n)dx (13)
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where ¥ i1s the so—called conormal to the surface S &nd has

direction cosines equal to  v,, v,, Vg such that

Yy =, Uy = 0y, Vg = I (1k)
where ni, nz, ng are the directlon coslnes of the normal ‘o the
surface 8 (fig. 1). (The conormal at any point X3, yis 21 of a
surface 1s the mivror image In the pleme X = x; of the normsl
through the same point.) If o &and @ are perfectly arbltrary
Pfunctions, aglde from satlsfying the usual conditions of single—
valuedness, etc., equation (13) represents an 1ldentity and this. fact
will be useful at a later time, For immediate purposes, however, o
end Q will be chosen as solutions of the differentlal equa.tion undexr
conslderation so that )

DZU = Dzﬂf 0

lfn——aa“w=o | (15)

The use of equations (13) and (15) depends upon an understanding
of the physical nature of supersonic flow fields., The essentlal
feature of such flow 1s the presence of Mach cones which correspond
to the characteristic cones arising in the mathematlcal study of the
wave equation., In accordance with these concepts & disturbance in
the flow field can affect the flow only within 1ts aftercone, that
ig, the cone with vertex at the point of disturbance and with axis
extending in the direction of the undisturbed stream veloclty
vector; conversely, a point in the flow field can be affected only
by dlsturbanceg which emanste fram points within 1ts fgrecone.

and, consequently,

When the dlsturbances are generated by a wing it is, moreover,
necessary to spesk more specifically about the nature of the leading
edge of the wing. For all cagses considered here the assumption will
be made that the plan form 1s & polygon, that 1s, 1s composed of
stralght line segments., If the wing is swept ahead of the foremost
Mach cone, the cones arising at the leading edge will have as
envelope a wedge—shaped surface passing through and extending back
from the leading edge, whille if the wing 1s swept back of* the
foremogt Mach come this cone will be the surface along which the
air first experiences perturbatiens or disturbences. Thus, a
point P with coordinates x, y, z is affected by all disturbances
lying within 1ts forecone I' and at the same time behind the forward
surface A\, the nature of the latter surface beilng dictated by the
leading edge. In figures 2(a) and 2(b) these surfaces, along with

IS
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the dlsturbance plame T, are indicated for two different wing plan
forms. In the epplications of equation (13) the volume Integral is
limited to the portion of space common to the surfaces I'y, A, and T
and the surface Integral Involves a dlscussion of conditions on thess .
surfaces.

Up to this point the analogy between the subsonic and supersonic
cages, Insofar as the use of Green's theorem is concerned, is quite
apparent. The principal difference which occurred was brought about by
the use of the true normal in the subsonic fileld together with the fact
that the xy-plane was covered by & hemisphericel dome of infinite radius ;
whereas, in the supersonic field, the concept of the conormal wase
introduced and the volume to be considered was that enclosed within
a finite region. In continuing the analogy, however, far more
formidable obstacles arise. To begin with, the discussion of ¢ and
Q@ over the surface in the subsonlc case was relatively simple. Thus,
with no limitations of generality Q could be assumed zeroc at
Infinity and AQ was specified completely in the xy-plame. But in
the supersonic case, although AQ can be assumed known in the xy-plane
and, as will be seen later, 9 may be evaluated on the forward boundary
of the region, nothing is known of Q on the forecone I'. Hence ¢
must be chosen properly so that the knowledge of Q is unnecessary on
I. The most obvious choice of ¢ would be a particular solution of
equation (4) which would meke o =0 on T and this is in fact the
choice used by Volterra (reference 1) and applied to asrodynsmic
Problems in reference 2. However, if the analogy is to be maintained
the choice of o is not arbitrary but must be the three—dimensionsal
supersonic source corresponding to the fundamental solution

% in subsonié theory. But such a solution, L =

re
—_
[ (2%3)2 = (3=71)2 — (2=21)3] 2 ‘Ybecomes infinite alomg the
forecone I' which has the equation (x—x3)2 — (F~y1)2 — (2-231)2 = O,

It 1s Just this difficulty which apparently invalidates any further—
ance of the anslogy and the prediotion in advence of an aerocdynamic
gshape from a distribubtlon of sources and doublets in supersonic flow,.
However, 1t 1s also precisely this difficulty which is overcome by
Hadamerd!s genersl methods. :

Extension of analogy by Hadamard's Method.— The full develop—
ment of Hadamard's methods cannot be given here, but a rough sketch
of his ressoning willl perhaps be useful. The basis of his arguments
stems from equation (13). First it is admitted that the right-hand
slde of equation (13) will tend to Infinity as the surface S
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approaches I' go that -rl—- is not & regular solution to Dzﬂ =0
c

on I'. However, as has been mentioned, equation (13) still must hold
whether or not o or § satlsfy the wave equation and thus 1t still
provides an equallity., Hence, 1f the surface integral tends to
infinity so also must the volume integral., Further, equation (13)
implies that these infinilte portions jJust cancel since the difference
of the two integrations must always glve zero. To deal with such a
problem quantitatively by the usual mathematical techniques would
require the study of a limiting process for éach new boundary value
problem, Hadamard's contridution was the Introduction and Justifica—
tion of a concept which removed the necessity for studying the
infinite portions involved. This concept is best presented by

meens of a new notation, thus the sign | is used and is
to be read "the finite part of."

Using thls concept it 1s possible to show that 1f' o were set

equal to —l—, then equation (13) could be written

/(3 00 o d)m

2@ e o

so that the "finite parts" of each slde of the equation would be
equal. BSuch a notation would, of course, in general be meaningless
since in dlscarding arbitrarily a part which tended to infinity 1t
would be possible, by proper combinations, to obtain as a remainder
apy finite velue. The fact 1s, however, that the Integrals involved
in equation (16) temnd to infinity only at a limit of the Integration
and this limit alweys involves the forecone I'. It was consequently
possible to devise a menipulative techmique to handle equation (16)
without oconsidering the singularities individually. It might be
mentioned, without stressing the correspondence, that a treatment of
improper integrals 1s also employed in the use of Cauchy's principal
value, In subsonic thin-eirfoil theory and lifting-line theory
integrals of the latter type are well known in the form

-
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® £(xo)dxo
I, = f 2(x0)dxg o< T <o
fo} X~Xn

I, certainly tends to infinity as x; approaches x bDut the use
of Cauchy's principsl value allows the very large values of the
integrand obtained when x5 1s on either gide of x %o Just cancel
in such a way that I3 1s finite and unique. So again the

integral
[ [xo A(x)dx
(z)

is finite and unique and given by Hadsmard in the form

Iz =

- f“A(x)—A(xo) 24(xo)
*Tla (w37 (z-a) /2

It is actually possible to generalize the idea of "finite part] to the
case when the expoment in the denomilnator is of the form J + z where
J 1is a positive integer but such a generalization 1s not needed for

asrodynsmic applications and will therefore be amitted.

In asctual calculation, the evaluation of the Integral Iz can
be shortened considerably. Thus, if the indefinite Integral of

f A(x)ax
(xo—x)
is written in the form f(x)+C_ then

Alx)A(z) . 2A(zo)
= 0 xo[f: (zpm) o2 (xo-a>1/2]

24(xp) ]

= lim I: F(x)+C-F(a)—C— ) 7z

X > Xo

It follows that if C 1s chosen so that

2A(xo)
= lim -
c o xo[ = F(x):}
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then the expresaion for Iz mey be written Iz = —[F(a)+C] .
When C 1is chosen in this mammer, the notation for the calculation
may thus be modifled to the form

Mr% alx)ax f* A(x)dx
[ (xg—x)8/2 Ja (x—x)3/2

where the asterisk Indicates that the upper limit ls not subastituted
into the indefinite integral, ¥(x) + C.

The technique for the calculation of the finlte part has
therefore been reduced to three simple steps: first, the Indefinite
integrael ¥(x) + ¢ is determined, secomd, the oonstant C in the
indefinite Integral is evaluated by means of a limiting process,
third, the lower limit of the integral is substituted into the
indefinite integrel and a minus sign prefixed. As an example,

'conaider the Integral

/ Yo xdx . [ _xdx
a, (xca_xz) 8/2 a (102“ 2) 8/2

' In this cage F(z) +C = = + 0
(x,3-x%) 1/2

o - lim ': 1 "1 :].= o
X =X | (2xo) 7% (zox) 77 - (x2x?) 1/2

so that, finally,
' *

f . xdx = —LF(&) + C] = =1
& (z,229)%/2 (rores) 172

With the aid of this artifice the analogy between the subsonic
and supsrscnlc cases can be continued with relative ease. Thus, in
equation (16) the right—hand member is zero provided we exclude the
point P fram the volume of Iintegration. This can be dome most easily
by limiting the integration to the x; = constant plane, a distance €
upstream fram P, The portion of this plane Intersected by the come,
and thus the section over which the integration must be carried, will
be denoted by = (fig. 3).
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As drawn, figure 3 shows a cross section in a y1 = constant
plane for the special case when P is located directly behind and
above the foremost disturbance. Applying equation (16) to the
-reglons above and below the disturbance surface T (plane of the
alrfoil) yilelds the two equations

|f~/;+r+-.— Bu< ] a8

SHUACIOET " @

and

n
o

(18)

[ b @ 23]
AT+T do' \rg re dv!

where the prime indicates the surfece velue of Q on the opposite
gide of v fram P,

The Integration over X oan be computed for € very smsll,.
For convenlence, conslder P to be the origin; then it follows that
gince the conormel 1s In the x; dlrectlon and the area element can

4
be written ¥ dy d8 vhere 8 = arc ‘ban}-:'-' and 7=A512+z_12, the
1

right side of equation (17) will give
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A O ) e | e e

Ba(x,y,z) d'ef
ax,_ ./ -2
-—evd oalx,y,2) n€
= lim Wﬂ(x:y’z)h[' 7 g s + 2T (x,7, y A } = 27Q(x,y,2)
€ —>0 ox) o /eB _ 72

Hence the value of Q at the point P, 0 (x,y,z) can be determined
from equation (17) with the restriction implied by equation (18).
Further, since only the "finite part" 1s considered, the integration
over TI' ylelds zero and the two equatlions combine to glve

E D e
——— — ﬂ"'ﬂ' dx,
T[rc az aZ ( ldyl

1
Q (x:Y:z) B - —
2x

[Qa 1) 1 an]ds 1 ff[“ < 1 e
A S;;;—E_a; ~ ox A ot re rc'&)_

(19)

The only remalining difference between the subsonlc solution for the
distribution of sources and doublets, equation (10), and the super—
sonic solution, equation (19), is the integration over surface A\.
The detalled discussion of the contribution of the surface Integrals
over A wlll be deferred to Appendix A. It must suffice for the
present to remesrk that In all applications the integrals over A In
equation (19) are elther zero or cambine to give zero. It therefore
follows that
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S5 -8)eamil)]mm

(20)

1
Q(x,y,2) = — =
2x

and the complete analogue to equation (10) has been established through
the use of the concept of finite part.

APPLICATIONRS
Interpretation of Previous Results

As & means of Indicating the various problems to which equation (20)
can be applied, three previously published results will be discussed.
These applications include, first, the expression for the perturbation
velocity potential of a symmetrical nonlifting elrfoil (reference 6),
gecond, the calculation of pressure distribution over a semi—infinite
wedge with leading edge aswept back of the foremost Mach cone
(reference 5) and, third, the integral equation method for determining
the load distribution over a lifting surface of arbitrary slopse
(reference 7).

As in the case of equation (11) for subsonic flow, let Q
represent veloclity potential ¢ and consider the cagse of a symmetrical
wing at zero angle of attack, .

Then %Q3= w, and —:QJ':wz, where W, and W, are
Z z

Induced vertical velocities on the upper and lower surfaces,
respectively. Moreover, O w= ®. = 0 for the symmstrical cass so

1
that, since wy —wy = 2 Wy,

1
) =,....f ‘_'ndxlayl
b8 T Te

The integral in this equation 1s finite at I' so the finite part
slgn may be disregarded and

@=_.];f M ax;, ayy (21)

Te
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This equation agrees with results given by Puckett in reference 6.

As another exemple consider the solution used by R.T. Jones
in reference 5 for a nonlifting symmetrical wing. Setting &
squal to w 1in equation (20) and using the fact that w and u
are related by the expresslon

2
u=é—/ w dz
OX Joo

1t follows that

A ;
w=22 g ffwu-a—-<L>dxl dys (22)
T OX T oz T

For a wedge swept behind the forward Mach cone and having as the
equation of 1ts leading edge the relation x3 = my;, the
expression for u may be wrltten in the form

Wy . z dzfﬁ * z dx3
v = ﬂ—-gx- ' o dy1 Y1 [(xx1)2 — (y~y1)2 — 22]3/2
vxz - 32 = * T

where
2 2 1
oy f(x=-%Y +2 (= ~1)
Yl__.m m m
2
n2

Performing the integration with respect to x3, 1t follows that

1
Y - - <L) 4y
u = W_& ““a fz zdz * (x o ) 21 — =)
n ox X2 y2 o [(y—y1)2 + 23] ./(x - mz—l) — (y=y1)% - 22

and, -after reversing the order of integration
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s B - (- T sz
u=#a—x—[ ay: [

/( AP [ (7=71)2+27] [(x — L) B (y-71) 522
X = F)=\FT1

-kﬁlé_"f?:l [ ‘/(x"'inl')z—(.‘7‘-'371)2—z2—k(x—I‘T’T’li1 )
)

a._/(x—%l-)a—(y—yl)a—zz+k(x—y—l-

m

J2 J1 .
vhere k=1 for x>— and -1 for X<z . Taking the partial

derivative with respect to x and noting that the value of the logarithm
at the upper limlt 1s zero, the value of the Induced veloclty is

YJ,.
2 [ —
U= —-—=
§ (x - 32 - (7 - 71)2 - 22

eand integration yilelds the final result

(x —my) —of (1 - m2)(x2 — y2 — 22)

Wy m
= e— in —— e
3\':‘\/l--m? 7(mx - )2 + 22 (1 — n®)

u

Ap 2u Wy
Denoting pressure coefficlent — bDy -5 and setting v equal

to <%z_i.x> the slope of the surface, this may be written
o A

dx ——

p_2 (&) _=m (x - ny) — /(L = B (& = 7% = 28)
= ( >.7T3'T R == ey ) (23)

Equation (23) gives the pressure coefficlent at any point in the
field produced by a wedge swept behind the Mach cone, Whem 2z 1s
gset equal to zero the pressure distribution over the wedge ltself 1s
determined and the equation corresponds exactly wlth equation (12)
of reference 5.
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When loeding 1s to be prescribed over & thin 1ifting surface, Q
may be assumed equal to the perturbation velocity u. A direct
consequence of this assumption is that in equation (20)

Bnu_BQz
3z oz

since, from conditions of irrotationality,

du, dwy, vy dmy
d2z - dx dx oz

By definition

L] = -

- R L))
q v q v

and load distribution in coefficient form, AC is given by the

s
relation P
MP:A!-J_&
a q
so that
2u Euu Fa')d
z = e
Lpe-gtg=-2-

Equation (20) can therefore be written in the form

u{]: A z dxy dya (24)

P
J[(x—xl)a - (y~y1)2 - 23]8

If equation (24) is transformed to the original space variables,
the relation for u is
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A0p Z 4X%; d.Yl
- B% [(¥-1)% + zzl}

Equation (25) 1s velid for erbitrsry plan forms with kmown load
distributions. Particular exmmples which may be worked out with
relative ease are the 1lifting surfaces carrylng constant load. Once
u 1s known the value of w oan be determined from the integral

'w=-—[ udx

and from w the ordlnate =z of the surface as a fu:nction of x and

¥ is glven by
' x
w
= - 4x
z \/z" 8. v °

where 1l.e. denotes the leading edge. A discussion of trapezoidal,
rectangular, and trianguler plen forms with constant loadling is
given 1n reference 2 although the method of dsrivation is different.

uXYZ
V

(25)

a/2

Interest in constently loaded wings has been based primsrily
on the fact that In certain cases they can be combined to produce
surfaces of given camber., Thus, & superposition of trapezoldal plen
forms of varieble reke, the constant loading over each trapezoid
beilng a functlon of its reke angle, can be used to produce a flat
plate of trapezoldal or rectanguler plan form at an arbitrary angle
of attack, In this case the loading as a functlon of rake angle is
determined so that induced vertical velocity is kept comstant. For
problems in conical flow a l1lifting element can be comstructed by
subtracting from a constantly loaded right triangle with angle of
sweep equal to © the constantly loaded right triangle wlth sweep
angle equal to 8 — 45, The resultent element carries & constant
locad and has a sweep angle equal to &. By summing these elements
1t 1s posslible to £ind the load distrlbution as & function of &
such that certain flat lifting surfaces at angles of attack are
formed. In reference 2, trlanguler wings swept back of the Mach
cone were studled by thils method for srbitrary engles of yaw. Brown
(reference 7T) has used this same lifting element to study the more
restrictive case of the symmstrical trienguler wing.

A brief discussion of differences existing between the methods
for producing the swept—back lifting elemsnt will shed some light
on the varlous lines of attack. The approach used 1n reference 2
1s essentlally mathematical in thet a particular solution of the
partial differentisl equation is used in conJunction with Green's
theorem to satisfy the boundary conditions of the problem., The
principal criticlsm of such & msthod i1s that the physical
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interpretation is missing., The use of equation (25), however,
removes all such criticisms for precisely as in the case of
incompressible flow the 1lifting element is created by distributing
doublets over the wing., Im Brown's solution it was necessary for
him to determine first & line of sources by means of an integration
along the line and then to form the doublet line by differentiating
along the normal to the line, The order of differentiation for
incompressible flow 1s immaterial, since the limits in the integral
are- independent of the posltion of the point P at X, Y, Z. Super—
sonic flow destroys this property end it is only after the introduc—
tion of the comcept of "finite part" that the derivative of an integral
may be wrltten es the integral of the differential coefficient of the
integrand. ZEquation (25) thus simplifies the analysis and at the
same tims meintalna the analogy with previous work.

Load Distribution for Rolling Wing

The usefulness of equation (20) is not at all restricted to a
gynthesls of previously known solutlons. As an example of its
generallty oconsider its application to the problem of the rolling
wing with leading edge swept shead of ‘the Mach cone. Figure 4
shows the boundary conditions involved. The value of w 1is
specifled over the wlng and, since the Mach cone 1s behlnd the
leading edge, the value of the perturbation velocities u, v, and w
are of course zero ahead of the leading edge. Assume for the
moment that a symmetrical body at zero angle of attack 1s congldersd.
It follows that If @, =w, and 8, = w, then equation (20} can

be wrlitten in the form
3
[ [ 2 (L)em an (26)
oz “rg

since, for reasons of symmetry, the nprmal gradients of w on the
two surfaces are ejqual. Using now the fact that the Mach come 1s
behind the leading edge then the pressure over the upper surface 1s
independent of the shape of the lower surface and equation (26)
may be applied directly to the rolling £lst plate 1f wy 1s
determined from the given induced veloclty on either the upper or
lower surface, Thls method of approach, of course, limits the
golution to cages where the leading edge ls shead of the Mach come,

1
W= -
x

If the rate'of roll i1s given'as P radians per second then
2wy = 2PY, and equation (26) becomes
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BZ Y,Z 4Y, dX;
f /: (27)

[(xx;)2 - p2 (¥-¥;)2 — p2 2219/

P
We —
x

The aree T 1n equation (27) is that contained between the leading
edge and the trace of the forecone on the XY~plsme. Figure 5(a)
shows the configuration for three traces corresponding to forecones
from the polnts P, Pp, and Psg . The region containing the
point Pz is distinguished from that containing P; and Ps by
the fact that 7 for P lles ahead of the Mach cone from the apex
and, furthermore, entirely on the right of the x; axls. The
regions correspomding to Py and Pz differ in the fact that when
Integrating from +w +to z %0 £ind u, the upper limit of the
integral in the first case 1s the Mach coms X2 — B3¥2 - p222 = 0
whereas in the latter case the upper limit is the leading-edge

mX — Y
wedge Z = (£1g. 5(b)).
J m2p3a
The solutlon must be carrled out separately for each of these
reglons but only the detalls for the reglon corresponding to P;
need be given here since the others are similar,

Tt follows that the induced veloclity u at the point P is
glven as the sum of the triple integrals.

Z o]
d P B3z 4%,
h =S£;f dZof Yldxlle 2_p2 - 2 g2y 218/2
%,&?_5212 A(1,2,) - = [(Z=X,) 5p3(YY1) 3-p72Z,%]
A(-1,Z
3 p P2 (FLZa) - B2 4%y
* gi _\.[ dzo.[ Ylle_/Cl 2 a2 218/2
e Yo T o= (%) 3p3(7-11 ) 287%,2 ]

Y
] Z 3 i/z dZokfo ZoYy (X + k m—l) ax,
k=—1,1 o % 2_pzy2 A(k,Z,) [(v—¥1)242,2] ;(X+kii)2_.52(y_yl)2 827, 2

(28)
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where A(k, Z,) 12 the value of Y; determined.by the Intersection
"of the forecone wilth the leading edge on the right and left sides
with k equal respectively to —l and +lL. See fig. 5(a).) Thus

_(kﬁ + BZY) + kB /(I +kﬂ)2 +Z02(ﬁz B2)

1 2
EE"B

Alk,2,) =

After reversing the order of integration and integrating with
regpect to Zo, it follows that

lP 3 ro [(x+k—-) ,/ (T+igr) p 371, ) 25 %2 :I
Y1dY1In

u = . Kk ———
z 2x OX (x41E) +.; (THek) 2pB(T-y; ) 2 %2

k= -l,1
Moreover, since the integrand ie zero at Y, = A(k,Z) the
derivative with respect to X can be taken inside the 1n'begral and

A(k,Z)

z . P fo Yy dY; :
K=—l.1 Ak,Z) »/(x + 5k)2 ~ p% (T-¥1)% ~ g2 22
r . .

Integrating in this equation and combining terms 1t follows that
induced velocity u 1s given by the expression

=En® meY + X arc sin m%Y + X -E
x W[ (mX+Y) 2 + (l—m ;sz)z2> :I

e [am o < Bf(mx-r?zaf ;1:5135)#) ' ; ]

(29)
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Betting Z = 0 1n equation (29), pressure cocefficient

Ap 2u
- = = — ig glven by the expression
q v
p 2 [ mpY-xX mpY — X
= s/ arc sin [ 1
q =V (m3p2 ~ 1) B(uX —~ Y)
mp“Y + X 2B3Y + X  mp3Y x
T mEBmEoD R Sin[ B(zX + Y) ] ¥ (m2p2 — 1) 8/2 (30)

This solution holds in both regioms comtaining the points Pj-
and P, ., However, In the region ahead of the Mach conme but still
on the wing (reglon corresponding to Ps) it is easy to show that

Ap 2Pm? ov _
s - TamE_ O (mg2Y — X) ’ (31)

where %<I< BY, TFigure 6 shows a spanwise plot of ° % for

m=2 and g = 1.

‘ Equations (30) and (31) provide sufficient information for the
caloculation of the atability derivative for damping in roll, Czp.

Integration of the leoad distribution ylelds-the result that

BC.L 1

TR e

3(Pb /2V) 38

€, =

Load Distribution for Pitchling Wing

Another simple application of equation (20) is found in the
solution to the problem of the pltching wing. Filgure T shows the
boundary conditlon involved which is that the vertical induced
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veloolty be a linsar funotlon of X;. If Q 1s the rate of pitch In
radians per second, then w = QX3 on the wing. Again the solution
is obtained only for wings which have leading edges swept ahead of
the Mach cone, (Although solutions can be obtained for leading edges
swept behind the Mach cone, they involve integral equations and do
nothing to illustrate further the direct methods of this report,)

In the rolling wing case, i was set equal to perturbation
voloolty w eand ag a result a distribubion of doublets was used
in equations (27) snd (28). As an example of the manner in which
source—sink distributions may be used for the same type of problem,
equation (22) will be applied in the present case. Since the wing
1s swept ahead of the forsmost Mach comne, induced effects on the
upper and lower surface are Independent and

_ ____ f[ QX dXy dYJ. (32)
J (5%1)2 = B2 (¥-1,)2 — p2 22

Agaln three reglons containing the points P, Pz, and Pg are
distinguished (fig. 5(a)) and the solutions will be derived only
for the reglon containing P;. Inbtegrating first with respect to
Yy and then differentlating wlth respect to X ylelds

(x,2Z) ]
= =_Q(X—BZ)+9-—Z f Xlg—a.rcsin o ax,

k1,1 '[(X—xl)z - p2z2
(33)

where P =5
X — p3km — Bk o (FmkY)2 + 22 (1-028%)

B(k,Z) =m Y

Consldering the limit as Z —> 0 and integrating gives:

Ap 2u
{since -q— = -
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Ap\ V 2m
('q" 2 (B 21)%/2 - = J(x2p2r2) (mzpz 1) - uX(2-m2p 2)

2.2
_ nX(2w"p%)¥ o sin —BEIm>

b4 BY-

2,2
M L sin<x+szzm (3)

T BY-+fmX

Formuls (34) 1s valld for the regloms P
1 and Ps of figure 5(a).
For the region Pz the solutlon is: ° gure S(e)

v
(%)55 (m23%-1)%2 - ¥ — 2xm + mssa (35)

Equations (34) and (35) provids sufficient information for the
calculation of the stebility derivative for the dsmping in pitch mg.

2v
plotted in figure 8 for m =2 &and B = 1.

Ap 1/
Values of <;—> / as dstermined from these squatlions are

Ameg Aeronsutical Isboratory,
Netionsl Advisory Committee for Asronsutics,
Moffett Field, Calif.

APPENDIX A
Discussion of Conditions on Surface A

By definition A 1s the surface on which the streamlines of the
flow first experience pressure disturbances, that is, the surface
along which the stream first becomes aware of the existence of the
wing., Figures 2(a) and 2(b) were introduced to show the nature of
the configurations involved for two different plan forms. It 1s
apparent that when the wing 1s swept shead of the foremost Mach cone
the wedge~like form of ) 1s comparable to the wedge appearing in
purely two-dimensional problems while the wing swept back of the Mach
cone has for 1ts surface a conical surface and thus may be thought of
as involving a purely three—dimensional problem.



30 NACA TN No. 1515

In order to determine the value of ® on A 1t is sufficient
to impose the condition thet the tangential component of velocity is
continuous across A . Such a condition represents no essential
restriction since 1t is an lmmedlate comsequence of continuity of
mess flow and continuity of the tangentlal component of momentum
aoross the surface. As a result of this condition, however, it
follows that the tangentlal component of the periturbation veloclty
i1g zero on the downstream surface of A since it ls obviously zero
on the upstream surface. Moreover, velocity belng equal to the
gradient of the veloclty potentlal the perturbatiomn—veloclty potential
must be equal to a constent on A . But an arbltrary constant can be
added or subtracted from the veloclity potential so that with no loss
of generallty the value of & on A can bPe assumed equal to zero

and, slnce the conormsl lies on the surface A ’~'§% is also zero.

The complete analogue to equation (10) has now been.develope@ for
Q=0 Bo that '

| .}_Gﬁ,iﬂ ]_‘n_n .5__<L>dx
L/'l/:[rc Oz Oz @fie) dz T, L

1
ax,y,2) = — =
2n

: (A1)

When Q 18 equal to one of the perturbation~velocity
components, 1t 1s obvious that boundary conditions over A and T
cannot be considered to be absolutely arbitrary since it is
necessary to Include the added restriction that the resultant
potential & also satisfles the equation

%0 _d% 3%
3x"  Jy°  a®

Congldering first the case where the wing is swept behind the Mach
cone, 1t follows that

=0

X J
' =f- u(xl;yyz)d-xl =f v(x:ylsz)dyl
¥ x2-z2 '

Jza+y2
z
= W(X,Y:Zl)dzl
x2-y2



NACA TN No. 1515 - 31

and, after evaluating the partiel derivatives of ¢ and substituting
in the given differential equation, direct calculation leads to the
conclusion that on A +the following differentlal equations hold

aya—ﬂ-+2z-a—u-$+ui=0

oF oz

ovy ovy

— e 27 ==+ 73 =0

ox oz *
2xa—w3=-+2y-a-w—]=+w1=0

ox oy

where u3, Vi, and w1 are the values of u, v, and w on A.
The gemeral solutions of these linear partial differential equations
can be written as follows

L p 4 1 4 1 x
u = fl(): V1= fa(;): W 8 fg (7)
y2r 2 VP Jx2iz2 | J x21y2

It has been stated, however, that the tangentlal component of the
total perturbation—velocity vector vanishes om A , or, in
analytical terms

luy +mvy +nwy = 0

where 1, m, n are direction mmbers of any tangent to A and
therefore satisfy the relation

'.zx—my—nz=0

Substituting the Imown expressions for wuy, Vi, Wi, it follows that

i J

e (@)t ()i (Deo
Y./ 7222 z Z/x24z2 X/ Tx2py2

or, using a different notation,
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RO O R

Conslder now the apecial case when 1 =0 and m = - 5;-?- Undsr

n z n X
-ih@*f”*’ <3">°

32

these conditions

so that

(- 1)

8ince the varilables % and
equation mey be written

) <§>= K and Fg G->= x§

vhere K 18 a constant, Returning now to the case where 1, m, and
n are in the ratio x: y: 1z, direct substitution into equation(A2)

are sgeperated; the solution of this

N

gives
@) @) im0
so that
2! G>+x§+§x§= 0
and
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This equation can, however, be written in the form

RE ¥
24+ 1 x
¥y z

from which it follows that K =0 and Fy; =Fg =¥ =0, All
perturbation velocity components are seen to be zero, consequently
equation (Al) is velid for all cases in which the wing is swept back
of the Mach come.

A discussion of conditions on the surface A will next be given
for the case where the leading edge of the wing lies along the y-exis
(fig. 2(a)) snd where Q represents u or w. The perturbation—
veloclity potentiel & may be given by the relation

b 4
Q(x,y,z) =\/; u(xlsy.’z) dxy
z

where the plus and minus signs in the limit apply, respectively, to
condltions above and below the xy-—plane, Bince & must satisfy
the basic differential equation, an added restriction is imposed on
u and as a result of thls condltion it can be shown that

..a_ul..o
dz

-~

where u; is the value of u on elther the lower or upper surface
of the wedge. It follows that the values of u on the two surfaces
are

Uy = fl(I,F) and u; = fz(IJY)

and, since the solution 1s independent of 2z, and x 1is
proportional to 2z 1n both cases, the final expressicns are

uy = £1(y) and wy = £2(y)

If ¢ (x,y,2) 1s defined as an integral involving w, the same type
of enalysis leads to the conclusion that w on the two surfaces can
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also be oxpressed as functions of y alone. DPerturbation velooity
v will not de oomsidered for this type of leading edge since the
inclusion of u and w ocovers all camonly used boundary condltions,

It remalns to subatitute the results Just obtained into equa—
tion (19) in arder to study the oontribution of the integrals over
‘A . Apparently only one term in each integrand need be conasidered
gince the conormal is perpendicular to the y—axis and the gradient of
€ 1n that direction vanishes. Ag a preliminary step to settlng up
the integrals it 1s oomvenlent to introduce a new coordinate system
x", y', 2" which is obtained by rotating the axial aystem about the
y-exis so that the x"— and z"—axes lie respectively in the lower and
upper wedge planes while the y"—-axis coinocides with the y-exis.

The transformation of variables is

x" = —L (x2—21)

VA3

2" = = (x1423)
2

When Q = u, the last two integrals in equation (19) mey now be
written

1| [ odze acne 5 (1_>dz..
B l-ﬁ_a':z'a' fl(ll)ﬂvlj; 35\

\/"y+./x?-zi f2(¥1)dn 5 ona-ef;“ <§:."';> ax"

Y —o/x2-22

Y
2x

Substituting for r,, this e:pressioq becames
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y+a/x222

-1 - P2 ag "
EK_L’/I_Z:Z_E fl(?l)dyl m 7====f====2===z==-=-=:=1=.=_,
(x ~JE 2%) *~(y—y1) *~(z iy zM 2

v+ 2322 *

-1 3 axt
fa(Yl)dF:!.[ -

ox — a
JEE " - E e 7=

_1 THAXEZE gy (31)dya
R A e N e e

1 pyh/xaz2 f£2(71)dya
2
"y 122 fra (o) 22

It is apparent that if £3(y) = — £2(y) the integrals combine to
glve zero so that equation &l) may agaln be used 1n all celculations;
moreover, the same condition spplies when = w. The assumption
that f£i(y) = — f2(y) 1s equivalent to postulating that in all cases
£1(y) and f(y) are odd functions of y. In application, however,
this property 1ls always maintained. '

It remains finally to conslider the case when the leading edge
of & wing 18 swept ahead of the Mach cone and when Q is =&
perturbation—velocity component. As a means of avoiding unnecessary
complication in treating the problem it is possible to substitute
firgt the transformation (referemce 5)

§=—y+mx

n=-x+my
t = ofm2 z

where the leading edge has the equation y =mx, z = O, and
n>1, Direct calculation shows that the basic differential equa~—
tion and the Mach cone are Inverilant under the trensformatlion and
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that in the new cobligue coordinate system the leading edges lles
along the n-exis while the planes of the wedge becoms

tE+¥ =0

Because of the invariant propertles of the tramsformation, and the
fact that the z = O plane is fixed, equation (19) 1s applicable
directly to the boundary value problem for the swept wing in the
new coordinate system. The treatment of the Integrals over A can
therefore be developed algebraically in exactly the same marmer that
applied to the previous case, hence u and w are constant along
the 1lines

g'-'Fg:O, 1'|=con5t

and, again, 1f conditions of skew symmetry are maintalned above and
below the z = = 0 plane the integration over the surfaces A
cancel, Thus equation (20) 1s seen to be valid for O equal to
perturbation-velocity potential or perturbation veloclity for all
types of striaght leading-edge configuratioms. And this 1s the
camplete anslogue of the subsonic theory.
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